CBSE Solutions for Class 10 Maths

Select CBSE Solutions for class 10 Subject & Chapters Wise :

State quadratic equations have real roots or no real root :- −x2−2x−2=0

Hide | Show

Answer :

no real roots

State quadratic equations have real roots or no real root :-  x−1x−3=0, x≠0
 

Hide | Show

Answer :

 real roots

State quadratic equations have real roots or no real root :- 2x2−6x+3=0

Hide | Show

Answer :

real roots

State quadratic equations have real roots or no real root :- −13x2+3x+7=0

Hide | Show

Answer :

real roots

State quadratic equations have real roots or no real root :- 11x2−12x−1=0

Hide | Show

Answer :

real roots

 State quadratic equations have real roots or no real root :- 9x2+x+3=0

Hide | Show

Answer :

no real roots

State quadratic equations have real roots or no real root :- 3x2+6x+1=0

Hide | Show

Answer :

real roots

State quadratic equations have real roots or no real root :- sx2+x+7=0

Hide | Show

Answer :

no real roots

Find the roots of the quadratic equation using square method :-2x2−7x+3=0

Hide | Show

Answer :

2x2−7x+3=0

(x−7/4)2−(7/4)2+3/2=0
(x−7/4)2=49/16−3/2=0
(x−7/4)2=25/16
x−7/4=±5/4
or
x=1/2 or 3

Find the roots of the quadratic equation using factorization technique :-

Hide | Show

Answer :

x2−11x+30=0
Solution- x2−11x+30=0
x(x-5)-(x-6)=0
Roots are 5 and 6

Find the roots of the quadratic equation using factorization technique :-

Hide | Show

Answer :

x2−3x−10=0
Solution- x2−3x−10=0
x(x−5)+2(x−5)=0
(x+2)(x−5)=0
So roots are x=-2 and 5

Find whether statement is True or False  :- A quadratic equation can have at most 2 real roots
 

Hide | Show

Answer :

True

Find whether statement is True or False  :- The roots of the equation x2−1=0x2−1=0 are 1,-1

Hide | Show

Answer :

True

Find whether statement is True or False  :- There are no reals roots of the quadratic equation x2+4x+5=0x2+4x+5=0

Hide | Show

Answer :

True

In the roots of the following quadratic equation: 23x2 – 5x + 3 = 0 (2011D)


 

Hide | Show

Answer :

We have, 2\sqrt{3}x2 – 5x + \sqrt{3} = 0
Here, a = 2
\sqrt{3}, h = -5, c = \sqrt{3}
D = b2 – 4ac
D = (-5)2 – 4 (2\sqrt{3})(\sqrt{3})
= 25 – 24 = 1

Solve for x: 4x2 – 4ax + (a2 – b2) = 0 (2011OD)

Hide | Show

Answer :

4x2 – 4ax + (a2 – b2) = 0
[4x2 – 4ax + a2] – b2 = 0
[(2x)2 – 2(2x)(a) + (a)2] – b2 = 0
(2x – a)2 – (b)2 = 0
(2x – a + b) (2x – a – b) = 0
2x – a + b = 1 or 2x – a – b = 0
2x = a – b or 2x = a + b

x = \frac{a-b}{2} or x = \frac{a+b}{2}

Solve for x: 3x2 – 26x + 2 = 0 (2012D)

Hide | Show

Answer :

3x2 – 2\sqrt{6} x + 2 = 0
3x2 – \sqrt{6}x – \sqrt{6}x + 2 = 0
 \sqrt{3}x (\sqrt{3}x – \sqrt{2} – \sqrt{2}(\sqrt{3}x – \sqrt{2}) = 0
(\sqrt{3}x – \sqrt{2})(\sqrt{3}x – \sqrt{2}) = 0
 \sqrt{3}x – \sqrt{2} = 0 x = \frac{\sqrt{2}}{\sqrt{3}}
x = \frac{\sqrt{6}}{3} ….[\frac{\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{6}}{3}

Find the value(s) of k so that the quadratic equation 3x2 – 2kx + 12 = 0 has equal roots. (2012D)

 

Hide | Show

Answer :

Given: 3x2 – 2kx + 12 = 0
Here a = 3, b = -2k, c = 12
As the roots are equal

D = 0
b2 – 4ac = 0

(-2k)2 – 4(3) (12) = 0
4k2 – 144 = 0 k2 = \frac{144}{4} = 36
k = \pm \sqrt{36}=\pm 6

Find the value(s) of k so that the quadratic equation 2x2 + kx + 3 = 0 has equal roots. (2012D)

 

Hide | Show

Answer :

Given: 2x2 + kx + 3 = 0
Here a = 2, b = k, c= 3
As the roots are equal

D = 0
As b2 – 4ac = 0
K2 – 4(2)(3) = 0
K2 – 24 = 0 or k2 = 24

k = \sqrt{2 \times 2 \times 6}=\pm 2 \sqrt{6}

Find the roots of the solution
 

1    √3x2+10x−8√3=0     A    −7√3 and 7√7
2    √3x2+11x+6√3 =0     B    −√7 and 13√7/7
3    3√7x2+4x−√7=0     C    −3√3 and −2√3/3
4    √7x2−6x−13√7=0     D    2/√3 and −4√3

 

Hide | Show

Answer :

1-D, 2-C, 3-A, 4-B

Find the roots of the solution

1    15x2−28=x     A    −3√2 and 2√2.
2    4−11x=3x2     B    −1/16 and 1/3
3    48x2−13x−1=0     C    −4 and 1/3
4    x2+2√x−6=0     D    −4/3 and 7/5


 

Hide | Show

Answer :

1-D, 2-C, 3-B, 4-A

Find the roots of the solution

1    6x2 + 11x + 3 = 0     A    25/4 and −4
2    6x2+x−12=0     B    −1/3 and −3/2
3    3x2−2x−1=0     C    4/3 and −3/2
4    4x2−9x=100     D    1 and −1/3


 

Hide | Show

Answer :

1-B, 2-C, 3-D, 4-A

Find the roots of the solution
 

1    x2+6x+5=0     A    −5 and −7
2    9x2-3x-2=0     B    −1 and −5
3    x2+12x+35=0     C    7 and 11
4    x2=18x−77     D    -1/3 and 2/3

 

Hide | Show

Answer :

1-B, 2-D, 3-A, 4-C

Find the roots of the solution
 

1    (2x − 3)(3x + 1) = 0     A    0 and -5/4
2    4x2 + 5x = 0     B    −9 and 9
3    3x2-243=0     C    3/2 and -1/3
4    2x2+x-6=0     D    -2 and -3/2

 

Hide | Show

Answer :

1-C, 2-A, 3-B, 4-D
 

Take a Test

Choose your Test :

Chapter 4 : Quadratic Equations

In a quadratic equation, x represents an unknown form and a, b, c are the known values. An equation to be quadratic “a” should not be equal to 0. The equation is of the form ax2 + bx + c = 0. The values of a, b, and c are always real numbers. A quadratic equation can be calculated by completing the square. A quadratic equation has:
• Two different real roots.
• No real roots.
• Two equal roots.

Browse & Download CBSE Books For Class 10 - All Subjects

The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.

The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.

For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.

ask-a-doubt ask-a-doubt